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O(t) of S(t), and let n be the unit normal vector to S(t)
pointing towards I(t). The surface S(t) propagates in theA new finite element method is discussed for approximating

evolving interfaces in Rn whose normal velocity equals mean curva- normal direction n with velocity
ture plus a forcing function. The method is insensitive to singularity
formation and retains the local structure of the limit problem and,

V 5 k 1 g, (1.1)thus, exhibits a computational complexity typical of Rn21 without
having the drawbacks of front-tracking strategies. A graded dynamic
mesh around the propagating front is the sole partition present at

where k stands for the sum of the principal curvaturesany time step and is significantly smaller than a full mesh. Time
(positive if I(t) is locally mean convex) and g 5 g(x, t)stepping is explicit, but stability constraints force small time steps

only when singularities develop, whereas relatively large time steps is a forcing function. The evolution of S(t) may exhibit
are allowed before or past singularities, when the evolution is singularities and topological changes, such as breaking,
smooth. The explicit marching scheme also guarantees that at most merging and extinction. So the classical geometric ap-
one layer of elements has to be added or deleted per time step,

proach fails to describe the problem past singularities, andthereby making mesh updating simple and, thus, practical. Perfor-
front-tracking methods (FT) may also break down [16].mance and potentials are fully documented via a number of numeri-

cal simulations in 2D, 3D, 4D, and 8D, with axial symmetries. They They do not only have to compute k explicitly, a delicate
include tori and cones for the mean curvature flow, minimal and issue for large principal curvatures but small k, but also
prescribed mean curvature surfaces with given boundary, fattening rely on a catalog of singularities to replace (1.1) whenever
for smooth driving force, and volume constraint. Q 1996 Academic

breaking or merging occurs. It is not surprising then that FTPress, Inc.

are not proven to converge as the discretization parameters
tend to zero, most notably for unsmooth flows. When appli-
cable in 2D, however, FT are efficient due to their low1. REACTION-DIFFUSION APPROACH WITH
computational complexity.DOUBLE OBSTACLE

We present a dynamic mesh algorithm (DMA) insensi-
The ever increasing interest in the curvature dependent tive to singularity formation which retains the local struc-

motion of fronts stems from its intrinsic mathematical ture of the geometric flow, and thus the computational
beauty and difficulty, as well as its applications to phase complexity typical of Rn21. Our method extends naturally
transitions in materials science, flame propagation, com- to higher dimensions, requiring mainly an efficient mesh
bustion theory, crystal growth, etc. [13]. In its classical generator, whereas implementing FT for tracking inter-
formulation, let S(t) , Rn be an oriented interface which faces in higher dimensions is a nontrivial matter. Prelimi-
splits Rn into two disjoint regions, the inside I(t) and outside nary results were reported in [20], and the theoretical foun-

dations in [21–26, 29]. It is based on combining a singularly
perturbed reaction-diffusion equation, the so-called Al-* Partially supported by NSF Grant DMS-9305935, MURST, and CNR

Contract 94.00139.01. len–Cahn equation, with a double obstacle potential.
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Given a small relaxation parameter « . 0 and a density with this very delicate issue, which is completely circum-
vented via (1.3).function 0 , a* # a 5 a(x) # A, the nonlinear PDE

reads formally DMA triangulates solely the transition region T«(t), and
then updates the resulting mesh to follow the layer motion;
see Section 4. This results in savings of both computing

«­t(ax«) 2 « div(a=x«) 1
1

2a«
C9(x«)

(1.2)
time and memory allocation. The underlying finite element
mesh is locally refined according to the mesh density func-
tion ha(x), with h . 0 being a global mesh parameter. Both5

c0

2
g in V 3 (0, y)

h and « are related so as to guarantee numerical resolution
of T«(t) and the optimal distribution of spatial degrees of
freedom. Forward differences are used in time with adap-and is subject to initial and boundary conditions
tive selection of time step t depending on the smallest
triangle size within T«(t), namely t # Ch2 minx[T« (t) a2(x),x«(?, 0) 5 x 0

«(?) in V, x« 5 f on ­V 3 (0, y).
because T«(t) is the active set for stability considerations.
This would not be possible for a regular potential like

The inequality in (1.2) must be interpreted in the sense of C(s) 5 (1 2 s2)2, for which T«(t) 5 V. Since a is designed
graphs. The zero level set S«(t) of x«(?, t) is regarded as an to be small only near singular points, relatively large time
approximation of S(t). Hereafter C stands for the following steps are allowed at the beginning or past singularities,
double obstacle potential with wells of equal depth located when the evolution is smooth. The explicit nature of the
at 61, scheme exhibits two further advantages. First, it guarantees

that at most one layer of elements has to be added or
deleted per time step (finite speed of propagation), thereby

C(s) :5H1 2 s2 if s [ [21, 1]

1y if s Ó [21, 1],
(1.3) making mesh updating simple and, thus, practical. Second,

its coupling with appropriate numerical quadrature (mass
lumping) yields a trivial algebraic problem that reduces
to a matrix–vector product followed by a componentwisec0 :5 e1

21 C1/2(s) ds 5 f/2 is a scaling factor, and V is a
bounded domain in Rn with n $ 2. The zero level set of truncation to meet the obstacle constraint. Consequently

there is no iteration involved.x 0
« coincides with S0 5 S(0) and x 0

« , 0 in I(0), and its
shape is extremely important to avoid an initial transient The limit of S«(t) as « Q 0 gives a notion of generalized

evolution S(t) that was reconciled in [19], for regular poten-and is discussed in Section 2, along with the choice of f to
simulate the various flows of interest. We may think of tials C and a 5 1, with the varifold approach which, in

turn, may lack uniqueness past singularities [10]. The latterf 5 1 for the moment.
Because of the double obstacle 71, x« is thus forced to is reflected in high sensitivity of (1.2) to initial data and

will be illustrated with a couple of examples in Section 5.2satisfy ux«u # 1 irrespective of g, but more importantly
x«(?, t) attains the values 21 or 11 outside a narrow transi- (see also Remark 2.2). The level set approach (LS), on

the other hand, provides a unique notion of generalizedtion layer T«(t) of local size O («a(x)) in the vicinity of any
regular point x [ S(t) [23]. The product «a(x) is thus the evolution by letting evolve all the level sets of an unknown

function g according to (1.1), which in terms of g readseffective relaxation parameter, which is space dependent
and graded towards singularities where it attains its mini- [27, 31]
mum «a*. Since a(x) is given, we presume that singularity
location is independent of time and known in advance. ­tg

u=gu
5 div S =g

u=guD1 g in Rn 3 (0, y),
(1.4)

Even though this is indeed the case in our simulations of
Section 5, an adaptive design of a space-time dependent

g(?, 0) 5 g0(?) in Rn.a(x, t) would be necessary in general.
The crucial property ux«(?, t)u 5 1 outside T«(t) is here

exploited numerically in that one only has to solve (1.2) This is a degenerate nonlinear parabolic PDE that must
be interpreted in the viscosity sense [14, 18]. The sign ofwithin T«(t), which is a relatively small region. On the

other hand our ability to control layer thickness results in g0 coincides with that of x 0
« outside S0. The generalized

evolution S(t) is defined to be the zero level set of g(?, t)enhanced pointwise accuracy because it can alleviate the
smearing effect associated with singularities. For the alter- and coincides with the limit of S«(t) in case of no fattening

[3, 11, 17], again for regular potentials. A convergencenative choice of potential C(s) 5 (1 2 s2)2, the boundary
values of x« must depend on g, and even for g 5 0 they theory for the singular potential (1.3) has been developed

[21–24], which extends to an implicit fully discrete approxi-cannot be taken to be either 21 or 11. Any attempt to
reduce the computation to a strip around S«(t) has to deal mation [25] as well as an explicit time-stepping with quad-
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rature [26]. The effect of variable relaxation parameter uxiu if n1 $ 1 or xi (no reflection around the xi 5 0 axis) if
ni 5 1. We also setand graded meshes is still an open problem. In contrast

no convergence results are known for any full discretization
of (1.4). Z 5 hz [ R2 : (x1 , x2) [ Vj,

Our method compares favorably with the implicit ­eZ 5 ­Z\hz : zi 5 uxiu 5 0, i 5 1 or 2j.
scheme of [8] which exploits (1.3) as well, but works over
a quasi-uniform partition of V with a 5 1; see Section 5.1.1.

We assume that g0, x0
« , g, a, f are axially symmetric; thatExplicit time stepping is also advantageous with respect to

is, they just depend on z1 , z2 ; then so are g(?, t), x«(?, t)LS implemented over uniform partitions of V in that the
for t . 0. To simplify notation, we keep the same symbolsstability constraint is then dictated by the smallest meshsize
for all functions g0, g, x0

« , x« , a, g, f and sets S0, S(t),through the whole calculation [27, 31]. Moreover, LS is
S«(t) involved, even though they now depend only onglobal and so effectively increases the problem dimension
the variable z [ Z. The initial front S0 , Z has boundedby one. This is not an issue for our method, that retains
curvature. The density function a 5 a(z) satisfies a [dimensionality and so the computational complexity typi-
W1

y(Z).cal of Rn21.
Letting c be the standing wave for (1.2),We present a number of numerical simulations in Section

5. We start with the circle in 2D as a benchmark calculation.
We show notorious gains in computing time for a desired

c(x) 5 21 if x , 2
f
2

, c(x) 5 sin x if x [ F2
f
2

,
f
2G,accuracy with respect to both a global graded mesh or a

uniform dynamic mesh. We continue with tori in 3D and
4D with axial symmetry; new singularities seems to emerge c(x) 5 11 if x .

f
2

,
from these simulations. Our emphasis is placed on the
calculation of critical parameters which lead to the blowup
of principal curvatures whereas their sum k may remain the initial datum for (1.2) is defined in terms of the signed
comparatively small. These cases are critical for FT. By distance function d0 to S0 by
enforcing suitable Dirichlet boundary conditions we can
examine cones in 2D, 4D, and 8D and, also, find minimal
surfaces and surfaces of prescribed mean curvature with x0

«(z) 5 c S d0(z)
« a((z 1 s(z))/2D ;z [ Z, (2.1)

given boundary as the asymptotic limit of (1.2) for t R y.
This provides a rigorous justification to the cutting strategy
of [6]. We illustrate how to detect fattening via two exam- where s(z) [ S0 is the projection of z onto S0. Note that
ples with smooth forcing g. We conclude with volume pre- S«(0) 5 S0 and x0

« approximates the first two terms of the
serving mean curvature flows cast as a nonlocal (1.2) with inner asymptotic expansion of x« [22, 29] which, in turn,
a multiplier [8, 12, 30]. These examples cannot be solved alleviates the initial transient regime. If S(t) , V for all t,
with LS and make the implementation of FT delicate be- then the boundary datum f for (1.2) is f 5 1. Instead, in
cause of the nonlocal (volume) constraint. order to simulate flows intersecting the boundary at G, that

The rest of the paper is organized as follows. In Section is, S(t) > ­V 5 G 5/ B, then f 5 x0
« on ­V.

2 we formulate the double obstacle problem in axial sym- We indicate with L2
z and H1

z the usual energy spaces
metry. The fully discrete scheme is tackled in Section 3, with weight z(z) 5 zn121

1 zn221
2 , and introduce the convex set

whereas implementation issues for the dynamic mesh
algorithm are discussed in Section 4. Flexibility and po-

Kz 5 hw [ H1
z (Z) : uwu # 1 in Z, w 5 f on ­eZj.tentials of the proposed method are fully documented in

Section 5 with several numerical experiments. A summary
of crucial properties of DMA concludes the paper in Sec- Let gk 5 (k 1 1) (f(k11)/2/G((3 1 k)/2)) be the surface
tion 6. measure of the k-sphere Sk but let gni21 5 1 (instead of 2)

if ni 5 1 and zi 5 xi (no reflection around the xi 5 0 axis).
Then note that

2. VARIATIONAL FORMULATION IN AXIAL
SYMMETRY E

V
w(z1 , z2) dx1 dx2 5 gn121gn221 E

Z
w(z)z(z) dz,

We intend to reformulate (1.2) as a variational inequality
= w ? =f 5 =zw ? =zf.in an axially symmetric domain V. Upon splitting Rn 5

Rn1 3 Rn2, we denote any point in Rn by (x1 , x2) with x1 [
Rn1, x2 [ Rn2. We set z 5 (z1 , z2), where zi indicates either The 2D variational inequality equivalent to (1.2) then
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reads: find x« [ L2(0, y; Kz ) > H1(0, y; L2
z (Z)) such that term g [8, 12, 30]. The variational inequality (2.2) is re-

placed byx«(?, 0) 5 x0
«(?) and, for a.e. t [ (0, y) and all w [ Kz ,

E
Z
S«­t(ax«)(w 2 x«) 1 «a =zx« ? =z(w 2 x«) 2

1
«aE

Z
S«­t(ax«)(w 2 x«) 1 «a =zx« ? =z(w 2 x«)

(2.2)

x«(w 2 x«) 2
f
4

e(w 2 x«)D z dz $ 0, (2.5)2
1
«a

x«(w 2 x«) 2
f
4

g(w 2 x«)D z dz $ 0.

E
Z

x«z dz 5 E
Z

x0
«z dz. (2.6)Remark 2.1 (Classical approach). The sum of the prin-

cipal curvatures k becomes
Equation (1.1) is then substituted by the nonlocal law
V 5 k 2 (1/uS(t)u) e

S(t) k. Consequently, the steady state
k 5 k̂ 2 (n1 2 1)

n1

z1
2 (n2 2 1)

n2

z2
(2.3) solution (V 5 0) corresponds to a surface S(y) with con-

stant mean curvature and can be computed as the asymp-
totic limit t R y. The resulting flow S(t) cannot be de-

in axial symmetry, where k̂ and n stand for the usual curva- scribed via LS.
ture and inner normal vector in 2D. Most of our simulations
of Section 5 investigate critical singularities, which may 3. DYNAMIC MESH ALGORITHM: FORMULATION
correspond to k smaller than the blowing-up principal cur-
vatures. This cancellation is a higher dimensional effect, Continuous piecewise linear finite elements are used for
even with axial symmetry in Rn11n2, and distinguishes the space discretization of (2.2) together with forward differ-
motion of a curve (n1 1 n2 5 2) from the evolution of an ences in time. Let mesh density H and relaxation parame-
axially symmetric surface (n1 1 n2 . 2). ter E be given by

Remark 2.2 (Fattening). If Sl
p(t) 5 hz [ Z : g(z, t) 5

H (z) 5 ha(z), E (z) 5 «a(z) ; z [ Z. (3.1)lpj develops interior for some lp , we say that Sl
p(t) fattens

up. Since this notion involves g, viscosity solution to (1.4),
Let P be a partition of Z into triangles (elements) S ofthe question arises as to how to characterize fattening in
size hS comparable with H (bS) and barycenter bS; forterms of xl

« , variational solution to (2.2) with initial datum
simplicity we assume Z 5 <S[P S. Elements satisfy thecentered around Sl(0). The volume uAl(t)u of Al(t) 5
minimum angle condition (regularity of P ) and the geo-hx [ V : g(x, t) # lj is clearly a nondecreasing function
metric constraint that the sum of interior angles oppositeof l. Since Sl

p(t) 5 (>l.l
p

Al(t))\(<l,l
p

Al(t)), it follows
to a common interelement side do not exceed f (weakthat
acuteness) [15, 33]. The latter yields a global Delaunay
triangulation P, which is introduced here for convenienceuSl

p(t)u 5 lim
lQl

p

uAl(t)u 2 lim
lql

p

uAl(t)u 5 vuAl(t)ubl
p
; (2.4)

only but is never fully present. A rather small part of it is
employed by our method at each time step; see Fig. 5.4.

If P1(S) denotes the set of linear polynomials restrictedthat is, fattening of Sl
p(tp) corresponds to a jump of uAl(t)u

to S [ P, then the basic finite element space V 1
P over P isat l 5 lp , for any (fixed) t such that 0 , t 2 tp ! 1. We

can thus approximate Al(t) with Al
« 5 hx [ V : xl

«(x, t) #
V 1

P 5 hw [ W1
y(Z) : wuS [ P1(S) ; S [ P j.0j in (2.4), and exploit high (exponential sensitivity of

uAl
«u with respect to «, to detect fattening (see Sections

5.2.1, 5.2.2). Since DMA evolves one level set at a time, Let hzjj J
j51 be the set of all nodes of P and hwjj J

j51 be the
as dictated by x0

« , it avoids interaction between nearby canonical basis functions of V 1
P , that is, wl (zj) 5 djl . Let

level sets. Even though this property is also valid for (1.4), PS : C0(S) R P1(S) be the usual (local) Lagrange operator
it is no longer true for a discrete counterpart of (1.4). We that interpolates at the vertices of S with a linear polyno-
expect flat regions of g to be replaced by regions with small mial. Mass matrices Mk 5 hmk

jljjl (k 5 21, 0, 1) and stiffness
slope depending on the discretization and regularization matrix K 5 hkjljjl are given by
parameters. Estimation of vuAl(t)ubl

p
would thus require an

intricate tuning of l and such parameters. mk
jl 5 O

S[P

E
S

ak(bS)PS(wjwl )z dz,
Remark 2.3 (Volume preserving mean curvature

flow). This flow can be described in terms of (1.2) with kjl 5 O
S[P

E
S

a(bS) =wj ? =wl z dz,
a time dependent multiplier e(t) in place of the forcing
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where ak stands for either 1/a, 1, or a as k 5 21, 0, 1. Each for « so small that ugu # 4/A«f. Therefore Xi11
j 5 Xi

j 5 1
(resp. 21), which says that the discrete transition layerelement contribution can be evaluated easily using suitable

quadrature rules and then assembled [15, 33]. The replace- (noncoincidence set),
ment of wjwl by PS(wjwl ) in mk

jl is the so-called vertex quad-
rature rule and has the effect of diagonalizing the resulting T i 5 <hS [ P : uXi(bS)u , 1j,
matrix (mass lumping); in fact, mk

jl 5 0 if j 5/ l. The discrete
convex set over P is defined by cannot move faster than one triangle per time step ( finite

speed of propagation) and, consequently, X i11 does notKP 5 hw [ V 1
P : uw(z)u # 1 ; z [ Z,

have to be computed at vertices lying outside T i.
w(zj)5 f (zj) ; zj [ ­eZj. With this crucial property at hand, we realize that there

is no need for the entire partition P but just for a rather
To motivate the actual algorithm, we examine the solu- small part of it. We thus introduce the dynamic mesh D i,

tion Xi11 [ V 1
P to the following full discretization of (2.2), and enlarged transition layer (or active domain) D i,

which uses C0 piecewise linear elements in space and for-
ward differences in time,

D i 5 hS [ P : S > T i ? Bj, D i 5 <S[D
i S.

O
S[P

E
S
S«a(bS)PS((Xi11 2 Xi)(w 2 Xi11))

We point out that D i consists of all elements without T i

and a layer of boundary (or security) triangles and is the
1 t i«a(bS)=Xi ? =(w 2 Xi11)

(3.2) sole decomposition of Z present. The label dynamic reflects
the fact that D i has to be updated every time step to

2
t i

«a(bS)
PS(Xi(w 2 Xi11)) incorporate or delete security elements for the new transi-

tion region T i11; this procedure is further discussed in Sec-
tion 4.2 t i f

4
PS(gi11(w 2 Xi11))D z dz $ 0

We consider the following variant of (3.2) called dynamic
mesh algorithm (DMA). We construct D0 and set X 0 5

for all w [ KP . It is instructive to write (3.2) into matrix oJ0

j51 x0
« (zj)wj [ KD

0 and S0 5 hz [ D 0 : X 0(z) 5 0j. We
form. To this end, let P : RJ R RJ be the componentwise then suppose that D i and the iterate X i [ KD

i has been
projection on [21, 1] defined by (Pq)j 5 max(21, min(1, already found along with Si for i $ 0. We denote by M i

k
qj)) for q 5 hqjjJ

j51 . If we identify any function of V 1
P with and Ki the mass and stiffness submatrices corresponding

the vector of RJ of its nodal values and set gi11 5 hgi11(zj)j, to the J i nodes of D i. We execute the following four steps
then (3.2) can be written equivalently as a two-step process: to compute X i11, Si11, and D i11:

Step 1. the time-step t i is chosen adaptively to meet
Xi11/2 5 (M1)21 SSM1 2 t iK 1

t i

«2 M21DXi
the stability test within D i,

0 , s # t ii(Mi
1)21Kiiy , 1; (3.5)1

di

«

f
4

M0gi11D , (3.3)

Step 2. the iterate X i11 [ KD
i is determined as theXi11 5 PXi11/2.

unique solution to (3.3) within D i,
The actual computation of Xi11 is thus trivial in that we
first have to perform the matrix–vector products involved
on the right-hand side of (3.3) to define Xi11/2 (updating), X i11/2 5 (Mi

1)21 SSMi
1 2 t iK i 1

t i

«2 Mi
21DX i

and then project each component of Xi11/2 onto [21, 1]
to compute Xi11 (truncation). We stress that no iteration
is involved. 1

di

«

f
4

Mi
0 gi11D , (3.6)

If zj is a node of P such that Xi
l 5 Xi(zl) 5 1 (resp. 21)

for all adjacent nodes zl to zj , including zj , then (3.3) re- X i11 5 PX i11/2;
duces to

Step 3. the discrete interface Si11 is computed ac-
cording toXi11/2

j 5 Xi
j S11

t i

«2

m21
jj

m1
jj
D1

di

«

f
4

m0
jj

m1
jj

gi11
j . Xi

j 5 1
(3.4)

(resp. ,Xi
j 5 21) Si11 5 hz [ D i : X i11(z) 5 0j;
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Step 4. the dynamic mesh D i is updated by adding Remark 3.4 (Implicit scheme). It is customary for para-
bolic problems to use implicit time stepping. We stress thatsecurity triangles that intersect T i11 or deleting ones whose

intersection with T i11 is empty; D i11 is thus created. the choice of an explicit scheme may not be restrictive in
this setting. An implicit scheme would require t i # C(«a)2

Remark 3.1 (Stability). Condition (3.5) is achieved by in D i just for solvability of (3.2) which, together with the
an automatic reduction or increase of t i21 by the factors relation h 5 O(«) necessary for transition layer resolution
s or 1/s and is tailored to avoid oscillations: a node value [5], would anyhow imply t i # Ch2

S for a basically linear
of X i cannot jump from 1 to 21 even if all the adjacent relation between h and «. In addition, T i may move further
values are 21. It implies the usual stability constraint for than one element, thereby making mesh updating difficult
explicit methods, or impractical.

Remark 3.5. (Exact integration). Crucial remark (3.4)t i # Ch2 min
z[Di

a2(z), (3.7)
is still valid without mass lumping, that is, with PS in (3.2)
replaced by the identity. Consider a 5 1, for simplicity,

where C depends on mesh regularity but not on i. Since and let X i
l 5 1 for all adjacent nodes zl to zj , including zj ,

(3.7) has to be met only in the active region D i, which is and suppose X i11
j , 1. Since

significantly smaller than Z and a is small near singularities
only, we realize that relatively large time steps can be used E

Z
X i11 wjz dz $ E

Z
SS1 1

t i

«2DX iwj 2 t i =X i ? =wjwhen the evolution is smooth even past singularities. This
is advantageous with respect to more standard explicit
discretizations which suffer from (3.7) through the entire

1
di

«

f
4

gi11wjD z dz,calculation [1, 27, 31].

Remark 3.2 (Layer resolution). The measure de(t) 5
as results from (3.2) with exact integration and w 5(«au=x«u2 1 C(x«)/«a dx is known to converge weakly to
X i11 1 (1 2 X i11

j )wj , we make use of X i11 # 1 to arrive atthe surface measure over S(t), at least provided a 5 1 and
C is smooth [19]. This assertion results from G-convergence
for steady state problems and their discrete counterparts, E

Z
wjz dz .E

Z
X i11wjz dz $E

Z
S1 1

t i

«2 1
di

«

f
4

gi11Dwjz dzeven with double obstacles [5, 29]. Since the mass of de(t)
is concentrated in T«(t), we then infer that T«(t) must be
resolved to capture the correct asymptotic limit. In view $E

Z
wjz dz,

of (3.1) and the fact that the local thickness of T i is approxi-
mately f«a(z), the relation h 5 O(«) is enforced in practice; which is a contradiction. Therefore mass lumping is not
note that this supersedes asymptotically the absolute stabil- justified in light of (3.4) but rather in terms of solvability.
ity bound h # f«/2. The number of triangles in the transver- In fact Mi

1 would no longer be diagonal and thus an iterative
sal direction is Pfa(z)«/a(z)h 5 1/O(1) for any z [ T i, procedure would be needed to compute X i11 in (3.6).
which is taken to be between 10 and 20 for practical pur-

Remark 3.6 (Volume constraint). The discrete versionposes. Since D i is thus minimal in terms of number of
of (2.5) and (2.6) reads: construct D0 and set X 0 5 oJ0

j51triangles, the computational complexity of our method is
x0

« (zj)wj [ KD
0, S0 5 hz [ D0 : X 0(z) 5 0j, and m 5 eZcomparable with that of FT but much better than that of

X 0z dz; if D i and X i are already known for i $ 0, let t i beLS [1, 27, 31].
the time step satisfying (3.5) and find X i11 [ KD

i ,
Remark 3.3 (Velocity bound). The fact that the discrete ei11 [ R, according to

transition layer moves one element at most entails the
bound VS # hS/t i for the discrete front velocity of any
S [ D i. If S [ D i is the smallest triangle, then t i P Ch2

S X i11/2 5 (Mi
1)21 SSMi

1 2 t iKi 1
t i

«2 Mi
21DX i

and so VS satisfies

1
di

«

f
4

Mi
0ei11D ,

VS #
hS

t i P
C
hS

#
C

ha*
. (3.8)

Xi11 5 PXi11/2 , (3.9)

In view of (1.1) and g being bounded, we realize that (3.8) E
Z

X i11z dz 5 m, (3.10)dictates scheme resolution because curvatures beyond
O (1/ha*) will not be resolved. The improvement gained
via a variable relaxation E is again evident. Si11 as in Step 3 and finally D i11 as in Step 4. Solution of
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(3.9) for a given e is denoted X i11(e). Since function 4.2. Mesh Generation
F i11(e) 5 eZ X i11(e)z dz 2 m is continuous and strictly

We resort to an advancing front algorithm in the spirit
increasing, and limeR6yF i11(e) 5 6uVu 2 m _ 0, problem

of [28]. In order to construct the first mesh, the moving
(3.9), (3.10) admits a unique solution hX i11, ei11j.

mesh front (l) is set initially to be a partition of ­Z, together
The stability test on the multiplier for (3.4) to hold,

with the boundary of an equilateral triangle in the interior
namely uei11u # 4/A«f, dictates volume constraint reso-

of each connected component of the initial transition re-
lution.

gion T«(0), both graded according to H (z). Starting from
the seed(s), the mesh generator adds new triangles of sizeRemark 3.7. (Boundary constraint). If S(t) > ­eZ 5
comparable with H (z) for as long as nodes of l are foundG ? B and g(?, y) 5 limtRyg(?, t) is bounded, then the
to belong to T«(0).steady state solution (V 5 0) to (1.1) corresponds to a

This dynamic mesh D i11, consistent with H (z), is gener-surface S(y) with prescribed mean curvature k 5
ated using the advancing front algorithm which allows us2g(?, y) and given boundary G, and it can be computed
to either delete or incorporate efficiently an element to l.as the asymptotic limit of S(t) as t R y. Since a $ a* .
Since D i11 cannot exit Z and must fit the grid on ­Z, l0, the time step t i has always a lower bound proportional
comprises also ­Z \­D i11. In fact l is always the boundaryto (ha*)2. DMA can thus be used to approximate S(y)
of the subregion of Z not yet partitioned, but the nodeswith Si as i R y.
on ­Z \­D i11 are properly flagged, thereby ruling out any
computation on them. The deletion of triangles is a newRemark 3.8 (Range of application). DMA extends nat-
feature with respect to [28]. At this stage we either removeurally to higher dimensions, provided an efficient mesh
or add the corresponding contributions to the global matri-generator is available, and it also couples naturally with
ces. It is worth noting that the insertion of new triangles(finite element) solvers for physical quantities in the bulk;
can create new nodes, while the elimination of trianglesthese issues are being investigated. If a uniform partition
can lead to removal of nodes. In these cases it is necessaryof the entire domain V is used, as is done for LS, then the
to add or remove rows and columns of matrices. This isimplementation of an active domain D i would be rather
not accomplished by a complete renumbering of the nodes,simple. We show in Section 5.1.1, however, that this strat-
which would be inefficient, but by marking rows/columnsegy can be drastically improved via a graded dynamic mesh.
which have been removed, so that they can be usedOn the contrary, advecting a surface in 3D is a nontrivial
later when new nodes are added. This illustrates theprocedure, particularly to past singularities, thereby mak-
strong linkage between mesh generation and matrixing the use of FT restrictive.
handling.

Even though D i is weakly acute, such a property may4. DYNAMIC MESH ALGORITHM: IMPLEMENTATION
fail to hold for D i11. It is then necessary to postprocess
D i11 by simply switching the common edge of adjacentWe now describe computational issues that dictate prac-
triangles whenever the sum of the opposite angles exceedsticality and efficiency of DMA. Updating the mesh Di and
f. This process is known to converge after finite iterationsfinite element matrices to follow the layer motion are far
and to lead to a weakly acute triangulation. However, massfrom being trivial tasks. If properly implemented, they
and stiffness matrices must be modified accordingly. Thisresult in savings of both computing time and memory allo-
process introduces interpolation errors on X i which mightcation, and give more flexibility in selecting the local
accumulate. Numerical experiments show that this hap-meshsize.
pens occasionally and is restricted to a few elements, and
so its cumulative effect is not expected to degrade accuracy.4.1. Mesh Definition and Updating
However, this issue deserves further investigation.

The algorithm actually computes mass and stiffness ma-
trices Mi

1 , Mi
0 , Mi

21 , and Ki for the dynamic mesh D i,
4.3. Volume Constraintupdates t i on imposing (3.5), and finally solves (3.6) within

Di. We stress that D i is minimal in terms of the number To effectively compute ei11 in (3.9) and (3.10), we can
of triangles. use a secant-like method, as in [8]. Since t i is small, we

Once X i11 and T i11 , Di have been determined, D i is perform only one secant step and use the ratio at the
updated as follows. First, all security triangles S of D i, previous time step as follows:
namely S > T i ? B, S, that do not intersect T i11 any more
are removed because they are no longer needed. New ei11 5 ei 2 riF i11(ei),

(4.1)triangles are next created at all nodes on the boundary of
T i11 that are not interior to D i. The mesh so obtained ri11 5

ei11 2 ei

F i11(ei11) 2 F i11(ei)
.

is D i11.
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TABLE IQuantities in the denominator of ri11 verify

Shrinking Circle of Initial Radius l 5 1 (Dynamic Mesh
Algorithm, a(z) 5 max(0.1, uzu))F i11(ei) 5 F i(ei) 1 E

Z
(X i(ei) 2 X i11(ei))z dz,

h « J I CPU Et Ed

F i11(ei11) 5 F i(ei) 1 E
Z

(X i(ei) 2 X i11(ei11))z dz.
.1414 .4149 136 2711 31 .0390 .1718
.1000 .3454 194 3831 66 .0284 .1360These corrections only involve solving (3.9) and thus deal- .0707 .2810 278 7699 193 .0185 .0972

ing with the active domain D i. The global cost of each .0500 .2247 437 16326 644 .0119 .0678
time step of scheme (3.9) and (3.10) is just slightly higher .03536 .1773 683 23735 1656 .0070 .0432

.02500 .1383 995 49784 5244 .0031 .0202than that of (3.6) because of the extra work involved in

.01768 .1070 1492 106581 16580 .0011 .0075updating only the diagonal term gi11 5 ei11 in (3.6) with

.01250 .0822 2210 196739 47354 .0003 .0022ei11 obtained from (4.1). At the beginning, an extra cost
is required for computing r0 which amounts to about one
step of (3.6). Satisfaction of (3.10) can be verified a posteri-
ori. FT could also be implemented efficiently to handle DMA is fully documented for the case of a shrinking circle
the global volume constraint in 2D (see [7]). for which the exact solution is known.

5.1.1. Circle. S1 5 ­(D 2). Let Z 5 [0, 2)2, n1 5 n2 5 1
5. NUMERICAL SIMULATIONS with reflection and

We present a number of numerical experiments carried g0(z) 5 uzu, l 5 1.
out on a SUN Sparc II workstation for the geometric mo-
tion in 2, 3, 4, and 8 dimensions, with axial symmetries. The evolving circle r(t) 5 Ï1 2 2t shrinks to a point at
Motion by mean curvature (plus forcing), volume con- t† 5 As. Table I summarizes the experiments performed with
straint, and minimal surfaces are discussed. We employ DMA for a(z) 5 max(0.1, uzu) and « 5 1.5hulog hu and used
the following notation: the additional notation:

g0: initial datum of (1.4); J : average number of spatial degrees of freedom;
S0,l 5 hz [ Z : g0(z) 5 lj: initial interface; I : number of time steps;
I0,l 5 hz [ Z : g0(z) , lj 5 Inside (S0,l) if S0,l is closed; CPU: computing time in seconds;
d0,l: signed distance function of S0,l (negative in I0,l); Et: Lin(0, 0.49)-error for the expected extinction time;
X 0 5 oJ0

j51 c(d0,l(zj)/«a((zj 1s(zj))/2)wj : initial datum Ed 5 maxti[(0,0.49) dist(S(ti), S i): Hausdorff distance be-
of DMA; tween interfaces.

f 5 X 0 on ­eZ: boundary datum;
We compare the full mesh strategy (the whole mesh and

X(?, t): computed solution at time t; matrices are generated once, but the computation of the
uAl

«(t)u: volume (area) of set Al
«(t) 5 hx [ V : X(x, t) # solution and the stability constraint are performed only in

0j to detect fattening; the enlarged transition region) with DMA. The full mesh
strategy, which obviously requires a bigger memory alloca-Sk, D k: k-sphere and k-disk, as topological manifolds;
tion but avoids mesh updating, is also more expensive ina(z): density function (E(z) 5 «a(z): relaxation parame-
terms of CPU time than DMA (compare Tables I and II).ter, H (z) 5 ha(z): meshsize);

t† : extinction time; t*, tl

*, tl

**: critical times; tl
m: monoton-

icity change. TABLE II

We indicate the topology of both S0,l and I0,l using Sk
Shrinking Circle of Initial Radius l 5 1 (Full Mesh,

and D k in such a way that, e.g., a torus of dimension n 5 a(z) 5 max(0.1, uzu))
n1 1 n2 is written as Sn121 3 Sn2 5 ­(Sn121 3 Dn211). The

h « J I CPU Et Ed
function d0,l is given either in closed form or easily com-
puted via a Newton procedure for the minimization of dist

.1414 .4149 280 2581 43 .0414 .1792
(?, S0,l), based on a parametric representation of S0,l. .1000 .3454 524 4742 131 .0307 .1438

.0707 .2810 1026 7830 408 .0202 .1042
5.1. Motion by Mean Curvature .0500 .2247 1978 13815 1347 .0125 .0705

.03536 .1773 3873 22623 4098 .0071 .0437
Let g 5 0. We impose f 5 1 on ­eZ because Sl(t) , V .02500 .1383 7639 44903 15483 .0038 .0244

for all t . 0. Asymptotic accuracy and performance of
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TABLE III

Shrinking Circle of Initial Radius l 5 1 (Dynamic Mesh
Algorithm, Uniform Mesh)

h « J I CPU Et Ed

.05000 .2247 329 2465 84 .0464 .3048

.03536 .1773 489 7193 327 .0321 .2533

.02500 .1383 752 10391 835 .0220 .2098

.01768 .1070 1134 29835 3391 .0148 .1719

.01250 .0822 1688 43312 8272 .0098 .1240

.00884 .0627 2638 85218 25887 .0047 .0387

.00625 .0476 3937 170435 78920 .0031 .0237

FIG. 5.2. Torus S1 3 S2, n1 5 n2 5 (h 5 0.05, « 5 0.15), interfaces
at t 5 0.025i and tl

*, tl

**, tl
m (bold lines): (a) l 5 0.78556296 (tl

m 5 0.111080,
tl
† 5 0.170624); (b) l 5 0.78556298 (tl

* 5 0.111617, tl
m 5 0.119092, tl

** 5
This means that the overhead necessary to handle the 0.129542, tl

† 5 0.170844); (c) l 5 0.808 (tl

* 5 0.040106, tl
m 5 0.100950,

dynamic mesh and matrices is more than compensated by tl

** 5 0.198271, tl
† 5 0.198279) and zoom (interfaces at t 5 0.0025i $

0.175, and tl

**).just dealing with the active set as opposed to the entire
domain. Striking comparisons for resolution of the singu-
larity with the case a 5 1 over a quasi-uniform mesh are
reported in Table III.

Uniqueness of the evolution has been proven together with5.1.2. Tori. We consider the evolution of various tori
the fact tl*† 5 tl** [32].in 3D and 4D, with Z 5 [0, 3)2 and

5.1.2.2. Torus. S1 3 S2 5 ­(S1 3 D3). Let n1 5
g0(z) 5 ((z1 2 1)2 1 (z2 2 c)2)1/2 (c 5 0, 1), 0 , l , 1. n2 5 2 and c 5 0.

The topology of S0,l is so different from the previousNumerical experiments are intended to determine critical
one that leads to a quite distinct evolution. The numericalradii l*, along with times t* of singularity formation, sepa-
experiments with a(z) 5 max(0.05, 0.07z1 1 0.07z2

2) showrating evolutions with strikingly distinct topology.
now the existence of two critical radii 0 , l* , l**. For

5.1.2.1. Torus. S1 3 S1 5 ­(S1 3 D 2). Let n1 5 2, l , l* the surface shrinks at tl
† to S1 , hz2 5 0j and

n2 5 1 with reflection and c 5 0. suddenly disappears at tl
† (Fig. 5.2a). For l . l** a singular-

ity develops at the origin at time tl

*, and then the surfaceThere exists a critical radius l* such that for all l , l* becomes topologically equivalent to S3 until it shrinks tothe surface shrinks to S1 , hz2 5 0j and then suddenly
the origin. For l* , l , l** the evolution is for a whiledisappears at tl

† (Fig. 5.1a), whereas for l . l* the surface
similar to the case l . l**, but a second singularity formsfocuses at the origin at some time tl

*, when a singularity
at the origin at a later time tl

** . tl

* after which the surfaceoccurs, then changes its topology to S2 and eventually
becomes again a 4D-torus and shrinks at tl

† to S1 , hz2 5disappears at tl
† (Fig. 5.1b). Our numerical experiments

0j and disappears (Figs. 5.2c and d). Figure 5.2b corres-with a(z) 5 max(0.05, 0.07z1 1 0.07z2
2) yield

ponds to l slightly bigger than l*, as revealed by Sl(tl

*)
and Sl(tl

**) being very close to each other. Our simula-h 5 0.1, « 5 0.28: 0.64931264519 , l* , 0.64931264520
tions suggest:h 5 0.05, « 5 0.15: 0.64298575535 , l* , 0.64298575536.

lim
lQl

p

tl

* 5 lim
lQl

p

tl

** , lim
lQl

p

tl
† , lim

lql
pp

tl

** 5 lim
lql

pp

tl
† .

This would imply that the evolution is unique for both
critical values l* and l**. Moreover,

h 5 0.1, « 5 0.28 : 0.78943557 , l* , 0.78943558,

0.7965 , l** 0.7970
FIG. 5.1. Torus S1 3 S1, n1 5 2, n2 5 1 (h 5 0.05, « 5 0.15), interfaces

at t 5 0.025i and tl

*, tl
m (bold lines): (a) l 5 0.64298575535 (tl

m 5 0.296290, h 5 0.05, « 5 0.15 : 0.78556296 , l* , 0.78556298,
tl
† 5 0.298381); (b) l 5 0.64298575536 (tl

* 5 0.295622, tl
m 5 0.297845,

tl
† 5 0.299720). 0.8090 , l** , 0.8092.
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5.2. Fattening: 2S1 5 ­(2D2)

We simulate the evolution of two circles which may be
nonunique for suitable critical radii after a critical time t*
(see [4]). To detect fattening we resort to Remark 2.2
and stress the occurrence of a large jump in uAl

« u with
just a change in the sixth decimal digit of l. We impose
f 5 1 on ­eZ because Sl(t) , V for 0 , t , T with T . t*.

FIG. 5.3. Torus S1 3 S1 3 S1, n1 5 n2 5 2 (h 5 0.05, « 5 0.15), 5.2.1. Fattening with g 5 g(t). Let Z 5 [0, 5)2, n1 5
interfaces at t 5 0.025i and tl

*, tl
m (bold lines): (a) l 5 0.6049754 (tl

m 5 n2 5 1 with reflection and
0.348538, tl

† 5 0.349333); (b) l 5 0.6049755 (tl

* 5 0.347062, tl
m 5 0.349223,

tl
† 5 0.350379).

g0(z) 5 uz 2 (c, 0)u 2 1, g(t) 5 t 2 2,

A recent result by Ilmanen et al. [2] would suggest that with c . 0 to be chosen. The initial interface S0,l is com-
the surface at time tl** is tangent to a 4D-cone at the origin posed of two disjoint circles of radius 1 1 l for 21 ,
with opening Pf/4 which develops fattening. Detecting
fattening (nonuniqueness) for l* is a delicate issue which
thus deserves further numerical investigation. We note that
the proposed density function is not adapted to select l**
with high accuracy, because of the large curvature of the
front near the z1-axis at times t P tl

*.

5.1.2.3. Torus. S1 3 S1 3 S1 5 ­(S1 3 S1 3 D2). Let
n1 5 n2 5 2 and c 5 1.

A critical radius l* separates smooth evolutions until
extinction time tl

† , case l , l*, from singularity formation
at symmetric positions on the axes at time tl

* , tl
† , namely

the S1 manifolds (zl

*, 0), (0, zl

*). Our experiments with
a(z) 5 max(0.05, min(z1 , z2)) suggest that (see Figs. 5.3a, b)

lim
lQl*

zl

* 5 0, lim
lQl*

tl

* 5 lim
lQl*

tl
† ,

which means that for l 5 l* the surface shrinks to a point
without change of topology (no fattening!). Moreover, we
have the following approximate l*:

h 5 0.1, « 5 0.28 : 0.6202511 , l* , 0.6202512

h 5 0.05, « 5 0.15 : 0.6049754 , l* , 0.6049755.

It is apparent that mesh asymmetry influences the evolu-
tion, as shown in Figs. 5.3a, b. Mesh evolution is shown in
Figs. 5.4a–f for l 5 0.625, h 5 0.1, « 5 0.28, and various
time steps. The evolving front, as well as the triangulation,
are connected before the onset of singularities, as illus-
trated in Figs. 5.4a–c. At tl

* and after, both front and mesh
split into two connected components (see Fig. 5.4d). This
situation remains until the interior front disappears along
with the corresponding mesh, at tl

**. Then there are only FIG. 5.4. Torus S1 3 S1 3 S1, n1 5 n2 5 2, l 5 0.625 (a(z) 5 max(0.05,
one front and mesh left, as depicted in Figs. 5.4e–f. Topo- min(z1 , z2)), h 5 0.1, « 5 0.28): mesh and interfaces at t 5 0.1i # tl

† 5

0.432997 and tl

* 5 0.235113.logical mesh changes are handled automatically by DMA.
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FIG. 5.7. Fattening 2S1, g 5 21 (h 5 0.15, « 5 0.41), interfaces at
t 5 0.25i # 1.5 and tl

* (bold lines): (a) l 5 20.00570; (b) l 5 20.00565FIG. 5.5. Fattening 2S1, g(t) 5 t 2 2 (h 5 0.1, « 5 0.28), interfaces
(tl

* 5 0.882864, c 1 rl(tl

*) 5 C 2 Rl(tl

*) 5 0.0975, exact c 1 rl(tl

*) 5at t 5 0.25i # 1.75 and tl
m , tl

* (bold lines): (a) l 5 0.0089 (tl
m 5 1.312928);

0.067752, exact C 2 Rl(tl

*) 5 0.118293).(b) l 5 0.0090 (tl

* 5 1.258503, exact tl

* 5 1.288830).

l , c 2 1. For 0 , t , tl
† , let rl(t) be defined by the ODE

exact area 2f(r l(1.75))2 of two circles that evolve indepen-
dently (dotted line). The notorious jump in uAl

« u corre-r9(t) 1
1

r(t)
1 g(t) 5 0, rl(0) 5 1 1 l.

sponds to the numerical critical values l 5 0.0089, 0.0120,
0.0127 and represents evidence of fattening.For l 5 0 there exists t0

* . 0, where r0(t) attains a strict
maximum r0(t0

*) [4]. We then set c 5 r0(t0
*). The evolution 5.2.2. Fattening with constant forcing. Let Z 5

Sl(t) of S0,l is symmetric with respect to the coordinate (27, 7) 3 [0, 7) and n1 5 n2 5 1 without reflection around
axes for all l. For l , 0, Sl(t) is regular and consists of the x2-axis; hence z1 5 x1, z2 5 ux2u. Let
two circles of radius rl(t) centered at (6c, 0). For l . 0,
instead, Sl(t) consists of two circles of radius rl(t) for t ,
tl

* 5 minht . 0 : rl(t) $ cj, whereas Sl(t) develops a singular- g0(z) 5 min S 1
0.9

uz 2 (c, 0)u, 1
2

uz 2 (C, 0)uD2 1, g 5 21,
ity at the origin for t 5 tl

*. We note that Sl(t) changes its
topology for t . tl

* and the exact solution is no longer
known and that fattening takes place at t0

* for l 5 0. The with c , 0 , C to be chosen. Then S0,l is given by two
critical time t0

* and the center c 5 r0(t0
*) can be computed disjoint circles of radii 0.9(1 1 l) and 2(1 1 l) for 21 ,

easily with a simple ODE solver: l , (C 2 c)/2.9 2 1. For 0 , t , tl
†, let the radii r l(t) and

Rl(t) be the solutions of the ODEst0
* P 1.471847, c P 1.893391.

The purpose of our numerical simulation is to study the
r9(t) 1

1
r(t)

5 1, r l(0) 5 0.9(1 1 l), Rl(0) 5 2(1 1 l).behavior of Sl(t) around l 5 0. This is depicted in Fig.
5.5, which was obtained with

a(z) 5 max(0.05, 1 2 exp(2Sdz1 2 Flz2
2)), For l 5 0 there exists t0

* . 0, where r0(t) 1 R0(t) attains
a strict maximum [4]. Hence, letting c 5 2r0(t0

*) and C 5h 5 0.1,
R0(t0

*), for l , 0 the evolution Sl(t) of S0,l is regular up
« 5 0.28. to the extinction time tl

† of the small circle: the small circle
shrinks to a point and the big circle expands according to

The computed area of the region Al
«(1.75) for 20.1 # r l(t) and Rl(t). For l . 0 a singularity develops at (C 2

l # 0.1 is shown in Fig. 5.6, where it is compared with the Rl(tl

*), 0) 5 (c 1 r l(tl

*), 0) at tl

* 5 minht . 0: r l(t) 1
Rl(t) $ C 2 cj. For l 5 0 the interface Sl(t) fattens up
at time t0

* . The critical time t0
* and the centers c 5 2r 0

(t0
*) and C 5 R0(t0

*) can be computed upon solving numeri-
cally the corresponding ODEs:

t0
* P 1.055741, c P 20.619546, C P 2.591233.

The numerical simulation is carried out with (see Fig. 5.7)

a(z) 5 max(0.05, 1 2 exp(2Sd((x 2 0.05)1

1 0.9(x)2 2 Flz2
2)), h 5 0.15, « 5 0.41.

FIG. 5.6. Fattening 2S1, g(t) 5 t 2 2 (h 5 0.1, « 5 0.28); area of
Al

«(1.75) and 2f(rl)2(1.75) (dotted line) for 20.1 # l # 0.1. The computed area of the region Al
«(1.5) for 20.1 # l #
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FIG. 5.9. Cathenoid, a 5 f/3, k1 5 0.276495, k2 5 0.670934 (h 5

0.01, « 5 0.035), S*, S1
** , S2

** (dotted lines) and interfaces at t 5 0.1i
# T : (a) l 5 20.1 (T 5 1.5); (b) l 5 0 (T 5 1).FIG. 5.8. Fattening 2S1, g 5 21 (h 5 0.15, « 5 0.41): area of Al

«(1.5)
and f((rl)2(1.5) 1 (Rl)2(1.5)) (dotted line) for 20.1 # l # 0.1.

g0(z) 5 uzu, f 5 1, g 5 2k.
0.1 is shown in Fig. 5.8 and is compared with the exact
area f((r l)2(1.5) 1 (Rl)2(1.5)) of two circles evolving inde- We seek a curve S* 5 ­(I*) with constant curvature k .
pendently (dotted line). The abrupt change of slope of the 0 in Z and tangential contact at ­eZ, where I* is any set
dotted curve takes place at the value l P 0.011337 for contained in Z that minimizes the functional F (I) 5 u­I >
which the small circle disappears at t 5 1.5. Note the jump (0, y)2u 2 eI k [5, 6]. The empty set is always a relative
in uAl

« u corresponding to the numerical critical values l 5 minimum of F. The other minima of F correspond to sets
20.00565, 20.00585. with boundary S* composed of circular arcs of radius 1/k

intersecting tangentially with ­eZ, or normally with the
5.3. Minimal Surfaces reflection axes, or passing through the reentrant corner

(L 2 l, L 2 l) with angles less or equal than f/4.We approximate minimal surfaces or surfaces with con-
The initial curve S0,l is a circle of radius 0 , l , minstant mean curvature S(y) with given boundary G by seek-

(L, Ï2(L 2 l)). If kl . 1, then Sl(t) grows towards S*,ing the asymptotic limit of S(t) as t R y (see Remark 3.7).
with I* being either a relative or absolute minimum of F.

5.3.1. Cathenoid. Let Z 5 huzu , 1j, n1 5 1 with reflec- Simulations performed with a(z) 5 max (0.1, 1 2 exp
tion and n2 5 2; hence, ­eZ 5 huzu 5 1j. Given P 5 (cos (2dist (z, ­eZ)) and h 5 0.1, « 5 0.28 are depicted in Fig.
a, sin a) for 0 , a , f/2, we seek minimal surfaces S(y) 5.10 for both cases with and without reentrant corner. A
in Z with boundary P, which consists of two circles S1. To boundary layer is always present because of the Dirichlet
this end we impose G 5 S(t) > ­e Z 5 hPj and the initial condition f 5 1 necessary to enforce zero contact angle at
interface to be S0,l 5 PP > Z, where P 5 (l, 0) for ­eZ. This layer consists of very few triangles. If kl 5 1,
ulu , 1. The simulations are depicted in Fig. 5.9 and were then Sl(t) 5 S0,l correspond to a stationary (not minimal)
done, with point of F. If kl , 1, instead, then Sl(t) shrinks in finite

time to the origin.

a 5
f
3

. a*, l 5 20.1, 0,

a(z) 5 1 (quasi-uniform mesh D i), h 5 0.01, « 5 0.035.

Here a* 5 arc tan(cosh(c*)/c*) P 0.985515, where c* tanh
c* 5 1 is the critical angle such that for a* , a , f/2 there
exists two values k1 , k2 and corresponding cathenoids
Si

** 5 hz2/ki 5 cosh (z1/ki)j ] P (S1 3 D1) with S2
**

minimal and S1
** stationary; S2

** is the asymptotic limit
of S(t) in Fig. 5.9.a. If a 5 a* then k1 5 k2 and S1

** is
stationary. The surface S* 5 hz1 5 cos aj (2D2) is minimal
for all a and is the asymptotic limit in Fig. 5.9.b.

FIG. 5.10. Curve with constant curvature k and tangential contact at
5.3.2. Curve with constant curvature. Let Z be either the boundary (h 5 0.1, « 5 0.28), exact solutions (dotted lines) and

Z 5 [0, L)2 or Z 5 [0, L)2\[L 2 l, L)2, and n1 5 n2 5 1 interfaces at t 5 0.1i # 0.5, L 5 1, l 5 0.75: (a) l 5 0, k 5 3; (b) l 5

0.4, k 5 2.with reflection, along with
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FIG. 5.13. Two circles (2S1) under volume constraint, l 5 0 (h 5

0.1, « 5 0.28); interfaces at t 5 0.05i # 0.5; uAl
«(0.5)u 5 3.892855,

uI0,lu 5 3.926991.

FIG. 5.11. Cones (h 5 0.05, « 5 0.15), profile of s 5 z1 2 z2 for Si >
(hz1 5 0j < hz2 5 0j): (a) n1 5 n2 5 1, l 5 0, and l 5 20.0025; (b)
n1 5 n2 5 2, l 5 0, and l 5 20.0025; (c) n1 5 n2 5 4, l 5 0, and l 5

to be numerically ‘‘stable,’’ even in the presence of mesh0.0025, l 5 0 for h 5 0.025, « 5 0.08.
asymmetries and diffusion (« . 0).

5.4. Volume Preserving Mean Curvature Flow
5.3.3. Cones. We examine and compare the following

We present examples, with f 5 1 because S(t) , Vthree cases with Z 5 huzu , 1j, ­eZ 5 huzu 5 1j, g 5 0, and
for all t . 0, of curvature driven evolution with volumeg0(z) 5 z1 2 z2:
constraint. It is important to realize that LS does not apply,(a) n1 5 n2 5 1 with reflection,
whereas DMA does extend rather easily (see Remark 4.3).

(b) n1 5 n2 5 2,
5.4.1. Circles. 2S1. Let Z 5 (24, 4) 3 [0, 4) with n1 5(c) n1 5 n2 5 4.

n2 5 1 and no reflection around the x2-axis; thus z1 5 x1 ,
The initial surface S0,l exhibits a nonunique evolution (fat- z2 5 ux2u. Since
tening) for l 5 0 and cases (a), (b). Case (c) corresponds
to the minimal cone of Simons, which was studied in [9] g0(z) 5 min(2uz 2 (21, 0)u, uz 2 (1, 0)u) 2 1,
and requires at least dimension 8 of the ambient space.
The discrete evolution for l 5 0 is thus dictated by mesh S0,l consists of two disjoint circles of radii As (1 1 l) and
asymmetries. To capture fattening we compute evolutions 1 1 l for 21 , l , Ad. We employ the volume constraint
for values of l around 0 and use Remark 2.2. The cancella- uAl(t)u 5 uI 0,lu. The smaller circle shrinks to a point at time
tion taking place in (2.3) and the large value of the principal tl

† and the larger one grows, both maintaining their shape;
curvatures for l ? 0 small, together, make these tests their radius are r(t) and R(t). The evolution thus remains
difficult for FT. regular up to tl

† and is stationary thereafter. A simulation
The simulations were carried out with a(z) 5 max(0.05, with a(z) 5 max(0.05, 1 2 exp(2min(uz 2 (21, 0)u, uz 2

uzu) and h 5 0.05, « 5 0.15. The graphs of s 5 z1 2 z2 (1, 0)u))), h 5 0.1, « 5 0.28, and l 5 0 is shown in Fig.
versus time for the intersection of Si with the coordinate 5.13. A rapid variation of the Lagrange multiplier e i11

axes are depicted in Figs. 5.11a–c for all three cases. It is takes place near tl
†. This is related to the behavior of the

apparent that the initial velocity is infinite and the devia- nonlocal forcing term g 5 (1/uSl(t)u) e
Sl(t)k which jumps

tion from stationarity is much more pronounced in cases from 2/R(tl
†) to 1/R(tl

†) across time tl
†. The secant method

(a), (b). This effect is further substantiated in Fig. 5.11c of Section 4.3 does not fail even at this stage, as the
for case (c) with l 5 0, h 5 0.025, and « 5 0.08: the front agreement between uAl

«(t)u and uI 0,lu reveals.
moves initially very slowly to the top, but then it stops and 5.4.2. Circloids. 2S1. Let Z 5 [0, 3)2 and n1 5 n2 5 1
recedes. Fattening is shown in Fig. 5.12, where the area with reflection, together with
of Al

«(0.1) is plotted versus l for ulu # 0.1. In striking
contrast to cases (a) and (b), Simons cone, case (c), appears g0(z) 5 2uz 2 (1, 1)u 2 1 if z2 $ 1,

g0(z) 5 2u1 2 z1u 2 1 if z2 , 1.

Therefore S0,l is made of two disjoint circloids for ulu ,
1. The inside I 0,l of S0,l is the union of a rectangle of height
1 and base 1 1 l with a semicircle on top of radius As(1 1
l) and center (1, 1). Since we enforce symmetry across the
axes, the evolution subject to uAl(t)u 5 uI 0,lu only develops
a singularity at time tl

* when uI 0,lu . 2f, that is, l . l* P
0.097655. Thus, for l , l*, DMA will find an approxima-
tion of the metastable solution consisting of two identicalFIG. 5.12. Cones (h 5 0.05, « 5 0.15), area of Al

«(0.1) for 20.1 #

l # 0.1: (a) n1 5 n2 5 1; (b) n1 5 n2 5 2; (c) n1 5 n2 5 4. circles. For l . l*, instead, the surface S(y) is a circle
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(f) Critical cases. Most simulations examine singulari-
ties for which the principal curvatures blow up but their
sum remains comparatively small. New singularities for
tori seem to emerge. See Sections 5.1.2, 5.3.3.

(g) Volume constraint. This can be easily accommo-
dated via a Lagrange multiplier and needs no significant
computational effort. In contrast, LS does not apply.

(h) Discretization. DMA uses piecewise linear finiteFIG. 5.14. Two circloids (2S1) under volume constraint (h 5 0.1,
elements, with mass lumping, over a dynamic mesh for« 5 0.28); interfaces at t 5 0.1i # T and tl

* (bold line): (a) l 5 0.14,
T 5 1.5, uAl

«(T)u 5 6.615729, uI0,lu 5 6.601407; (b) l 5 0.16, T 5 3, space discretization and forward differences in time, with
uAl

«(T)u 5 6.798959, uI0,lu 5 6.753664. adaptive control of the time step. Explicit time-stepping
guarantees that at most one layer of elements has to be
added or deleted per time step, thereby making mesh up-
dating simple and, thus, practical. Stability constraints arecentered at the origin, and tl

* R y as l Q l*. Two simula-
dictated by the smallest meshsize within the active set.tions with l 5 0.14 and l 5 0.16, obtained with a(z) 5
Small time steps much thus be enforced only when singu-max(0.05, 1 2 exp(2Sd z1 2 Fl z2

2)) and h 5 0.1, « 5 0.28,
larities develop, whereas relatively large time steps areare drawn in Fig. 5.14. They corroborate the above com-
allowed at the beginning or past singularities, when thements and exhibit a good agreement between uAl

«(t)u and
evolution is smooth. This compares favorably with LSuI 0,lu. Note that the critical parameter l* is not selected
which uses uniform meshes and severe stability constraintswith high accuracy because the evolution is halted at a
throughout the entire calculation. No iteration is involvedrelatively small time T 5 1.5, and simulations use a rather
not even to meet the obstacle constraints.large value of h and «.

(i) Potentials. DMA exhibits desirable computational
6. CONCLUSIONS properties and potentials that make it appropriate as a

building block for adaptive solvers of complex phase transi-
We have shown how to exploit key features of a double tions. The adaptive design of a space-time dependent relax-

obstacle formulation of a singularly perturbed reaction- ation parameter is being studied, along with a 3D version
diffusion PDE in devising DMA, a competitive method of DMA. They both are prerequisites for coupling DMA
for the geometric motion of fronts. Crucial properties of with other evolution laws for the bulk.
DMA are:
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